Randomness buys depth for approximate counting

Emanuele Viola
College of Computer and Information Science, Northeastern University, Boston, MA 02115.
Email: viola@ccs.neu.edu

Abstract

We show that the promise problem of distinguishing n-bit strings of hamming weights $1 / 2+/-\Omega\left(1 / \lg ^{d-1} n\right)$ can be solved by explicit, randomized (unbounded-fan-in) poly (n) size depth- d circuits with error $\leq 1 / 3$, but cannot be solved by deterministic poly (n)-size depth- $(d+1)$ circuits, for every $d \geq 2$; and the depth of both is tight. Previous results bounded the depth to within at least an additive 2 .

Our sharper bounds match Ajtai's simulation of randomized depth- d circuits by deterministic depth- $(d+2)$ circuits (Ann. Pure Appl. Logic; '83), and provide an example where randomization (provably) buys resources.

Techniques: To rule out deterministic circuits we combine the switching lemma with an earlier depth-3 lower bound by the author (Comp. Complexity 2009).

To exhibit randomized circuits we combine recent analyses by Amano (ICALP '09) and Brody and Verbin (FOCS '10) with derandomization. To make these circuits explicit - which we find important for the main message of this paper - we construct a new pseudorandom generator for certain combinatorial rectangle tests. Based on expander walks, the generator for example fools tests $A_{1} \times A_{2} \times \ldots \times A_{\lg n}$ for $A_{i} \subseteq[n],\left|A_{i}\right|=n / 2$ with error $1 / n$ and seed length $O(\lg n)$, improving on the seed length $\Omega(\lg n \lg \lg n)$ of previous constructions.

Keywords-small-depth circuit; randomness vs. determinism; depth; approximate counting; approximate majority; pseudorandom generator; combinatorial rectangle

1. Introduction

Approximate counting is the problem of computing the number of 1 's in a (potentially very long) bit string with some error (which can be additive or relative). This is a central problem in complexity theory, studied in a number of contexts ranging from circuit complexity [5], [7], [26], [6], [13] to parallel computation (cf. [13]), simulation of BPP in the polynomial-time hierarchy PH [29], [22], [33], approximation algorithm for \#P problems [30], and AM protocols [17]. While some of these works explicitly study the complexity of approximate counting in the model of polynomial-size small-depth circuits $\left(\mathrm{AC}^{0}\right)$, all the above works can be instructively seen as giving various bounds on AC^{0} circuits for this problem, where the circuits are possibly randomized. The ability of small AC^{0} circuits to count approximately arguably remains one of the most surprising and useful tasks such circuits can accomplish.

Supported by NSF grant CCF-0845003.

Despite the importance of this problem, several basic questions remain open. In this work we focus on the tradeoff between the approximation parameter and the depth of the polynomial-size circuits that count approximately. We obtain matching upper and lower bounds both for deterministic and randomized circuits. Recall that, as usual, a randomized circuit C is a circuit that takes two inputs x, r, and for every x it gives the correct answer with probability $\geq 1 / 3$ over the choice of r.
Theorem 1.1 (Depth complexity of $1 / 2 \pm \epsilon$ approximate counting). For every integer $d \geq 2$: There are randomized $\operatorname{poly}(n)$-size depth-d circuits that distinguish n-bit strings of hamming weight $1 / 2+\epsilon$ from $1 / 2-\epsilon$ if and only if $\epsilon=\Omega\left(1 / \lg ^{d-1} n\right)$. Moreover, when the circuits exist they are explicit.

For every integer $d \geq 3$: There are (deterministic) poly (n)-size depth- d circuits that distinguish n-bit strings of hamming weight $1 / 2+\epsilon$ from $1 / 2-\epsilon$ if and only if $\epsilon=\Omega\left(1 / \lg ^{d-3} n\right)$.

Previous to this work, such a tight relationship was not known: the depth could only be estimated within at least an additive 2 - the upper bound is by Ajtai [5] and the lower bound follows from the negative results for majority by Yao [34] and Håstad [18]. The precise estimate in Theorem 1.1 is essential to differentiate between randomized and deterministic circuits. Thus, besides settling an arguably natural question, our result has a qualitative consequence for the study of the power of randomness in computation. We elaborate on this next.

The power of randomness: Adleman showed [2] that a randomized circuit $C(x, r)$ with error $1 / 3$ can be simulated by a (non-uniform) deterministic circuit $C^{\prime}(x)$ with only a polynomial overhead. To prove this result one can use a chernoff bound to exhibit a polynomial number of choices $a_{1}, \ldots, a_{\text {poly }(n)}$ for the coin tosses r of the circuit C such that for any n-bit input x the majority of the choices gives the correct answer. The deterministic simulation tries all choices and then computes majority: $C^{\prime}(x):=$ majority $\left(C\left(x, a_{1}\right), \ldots, C\left(x, a_{\text {poly }(n)}\right)\right)$.

The majority instances that arise in the above simulation have relative hamming weights bounded away from the middle by a constant. This allows one to carry through the simulation even in the restricted model AC^{0} of constantdepth unbounded fan-in circuits, thanks to the result by

Ajtai [5] (cf. [33]) that majority on such instances can be computed by polynomial-size circuits of depth 3 . Moreover, using the fact that Ajtai's circuit is monotone, one can collapse its bottom layer of gates with the output gates of the poly (n) copies of C (possibly after complementing circuits), to obtain: polynomial-size randomized circuits of depth d can be simulated by deterministic polynomial-size circuits of depth $d+2(\star)$. (For completeness we review Ajtai's construction in $\S 4$.)

A line of research in pseudorandomness has shown that, under complexity assumptions such as the existence of "hard" functions in E, the above simulations hold even in the uniform setting (though in the bounded-depth model, the depth increases by more than 2 as in (\star)), see e.g. [20], [3], [32].

Such results all suggest that randomness can be removed with little overhead. But how much is this overhead? A proof that, say, randomization buys cubic time for a natural problem would of significant interest regardless of how $P={ }^{?} B P P$ is resolved.
In this paper we prove a result showing that some overhead is necessary, in the AC^{0} model. An immediate Corollary to Theorem 1.1 is the existence of a promise problem [15] that can be solved by poly-size randomized circuits of depth d, but cannot by solved by poly-size deterministic circuits of depth $d+1$. Such a result with d instead of $d+1$ would already yield a new, qualitative separation. Our results go further and show that the depth2 increase in the above simulation (\star) is tight, at least for promise problems (the above simulations all hold for promise problems as well).

Corollary 1.2 (Randomness buys depth). For every $d \geq 2$ there is a promise problem Π (distinguishing n-bit strings of hamming weight $n\left(0.5 \pm \Omega\left(1 / \lg ^{d-1} n\right)\right)$ such that:
Π can be solved by explicit, randomized, $\operatorname{poly}(n)$-size circuits of depth d with error $1 / 3$;
Π cannot be solved by (deterministic) poly(n)-size circuits of depth $d+1$.

Corollary 1.2 provides an example where randomness buys resources, in the well-studied model of small-depth circuits. As also hinted earlier, the power of randomness in this model has been studied extensively. We add that it is the main question addressed by Ajtai and Ben-Or in [7].

For context, we point out the simplest separation in the spirit of Corollary 1.2 we are aware of: It is not hard to show that a poly (n)-size depth- 2 circuit (e.g., a DNF) cannot tell n-bit strings with hamming weight $\geq 2 / 3$ from $\leq 1 / 3$, but a randomized $\operatorname{poly}(n)$-size depth- 2 circuit $D(x, r)$, where $|r|=\lg n$, can distinguish with probability $\geq 1 / 3$ simply by selecting r at random in the set $\{1,2, \ldots, n\}$ which we identify with $\{0,1\}^{\lg n}$, and by outputting the r-th input bit,
as follows

$$
\begin{equation*}
D(x, r)=1 \Leftrightarrow \bigvee_{i \in\{0,1\} \lg n} i=r \wedge x_{i}=1 \tag{1}
\end{equation*}
$$

(note that $i=r$ can be implemented with one And gate).
However, it is not clear how to extend this to higher depth and to get the tight separation of 2 in the depth. We now explain how we achieve that.

Constructing randomized circuits: We now explain how we construct randomized, polynomial-size circuits of depth d that tell n-bit strings of hamming weight $1 / 2+\epsilon$ from $1 / 2-\epsilon$ for $\epsilon=\Omega\left(1 / \lg ^{d-1} n\right)$. First we mention a couple of natural ideas which do not work. The first is to sample a few input bits, and compute majority. However, to get constant error one needs to sample a number of bits which is quadratic in the "bias," i.e., $1 / g^{2}(n)=\Omega\left(\lg ^{2 d-2} n\right)$ many bits. Computing their majority requires circuits of depth $\geq 2 d-1$ [18], which falls short of proving our upper bound. Another way to get circuits of depth $2 d-\Theta(1)$ is to use [7, Lemma 2]. Finally, the depth of the constructions by Ajtai [5] and Stockmeyer [31] at inspection does not yield the bound in Theorem 1.1.

Instead, our starting points are recent works by Amano [9] and by Brody and Verbin [12]. Using calculations similar to those in [5], [7], these works give a deterministic circuit A of size poly (n) and depth d which solves the related problem of distinguishing the following two distributions with error $1 / 3$: i.i.d. bits X_{1}, \ldots, X_{n} such that $\operatorname{Pr}\left[X_{i}=1\right] \geq 1 / 2+$ $\Omega\left(1 / \lg ^{d-1}\right)$ or such that $\operatorname{Pr}\left[X_{i}=1\right] \leq 1 / 2-\Omega\left(1 / \lg ^{d-1}\right)$.

In our setting, we do not have i.i.d. bits as inputs but we have to succeed w.h.p. on every fixed input, and this distinction is crucial to separate randomness from determinism. However, the probability gap $\Omega\left(1 / \lg ^{d-1}\right)$ and the depth of the above circuit A correspond to what we are aiming for in Theorem 1.1. Hence we try to reduce an instance x of our promise problem to distinguishing these two distributions. A natural idea is to replace each input gate of the above circuit A with a randomized $\operatorname{poly}(n)$-size depth- 2 circuit which outputs a random bit in the input, as in Equation (1). By collapsing the output gates of these circuits with the bottom gates of A, one obtains depth $d+1$ instead of d.

To get the tight result (depth d) we use the circuit A but with the layer closest to the input removed. This is a depth $d-1$ circuit A^{\prime} that can distinguish with error $1 / 3$ the following two distributions (\star) : i.i.d. bits X_{1}, \ldots, X_{n} such that $\operatorname{Pr}\left[X_{i}=1\right] \geq \frac{1}{n}\left(1+\Omega\left(1 / \lg ^{d-2} n\right)\right)$ or $\operatorname{Pr}\left[X_{i}=\right.$ $1] \leq \frac{1}{n}\left(1-\Omega\left(1 / \lg ^{d-2} n\right)\right)$. The layer that we removed from A is a layer of disjoint And gates on $\lg n$ variables. Feeding A i.i.d. bits with probabilities $1 / 2 \pm \Theta\left(1 / \lg ^{d-1} n\right)$ is seen to have the same effect as feeding A^{\prime} i.i.d. bits with probabilities $\frac{1}{n}\left(1 \pm \Theta\left(1 / \lg ^{d-2} n\right)\right)$, and the decrease of the exponent of $\lg n$ is essential to obtain the tight result.

For our construction, an obvious idea is to replace each input gate in A^{\prime} by a function D^{\prime} that computes the and of
$\lg n$ input bits that are selected at random using the random input bits.

A difficulty arises. In order to not lose depth, it is necessary that this function D^{\prime} be computable by a polysize depth-2 circuit (i.e., a DNF or a CNF). The naive implementation of D^{\prime}, using $\lg n$ bits of randomness for each bit to be selected, is not. Instead, we reduce the randomness of D^{\prime} to $O(\lg n)$, which allows for the whole computation to be done by a poly (n) DNF (or CNF). Specifically, rather than selecting the bits independently, we select them via a pseudorandom generator for combinatorial rectangles, and prove that the error can be tolerated in the analysis. A non-explicit construction is a straightforward application of the chernoff bound. But previous explicit constructions are insufficient as we explain next.

A new pseudorandom generator to make the construction explicit: For the main message of this paper, that randomness buys depth, it is important that the randomized circuits are given explicitly: a separation between randomization and determinism where the upper bound is obtained via the probabilistic method does not seem convincing to us.

As hinted before, to make the upper bound explicit we need to use $O(\lg n)$ bits of randomness to select $\lg n$ input bits so that if the input $x \in\{0,1\}^{n}$ has weight $\alpha:=1 / 2 \pm$ $\Theta\left(1 / \lg ^{d-1} n\right)$ then the And of the randomly selected $\lg n$ bits has probability of being 1 equal to

$$
\frac{1}{n}\left(1 \pm \Theta\left(1 / \lg ^{d-2} n\right)\right)=\alpha^{\lg n} \pm o(1 / n)
$$

This amounts to constructing a pseudorandom generator for certain combinatorial rectangles. I.e., if $A \subseteq[n]$ is the set of bits of x that are 1 , we need to fool the test

$$
\underbrace{A \times A \times \ldots \times A}_{\lg n} \subseteq[n]^{\lg n}
$$

We stress that for the analysis we need both seed length $O(\lg n)$ and additive error $\leq 1 / n$. This is not given by previous constructions: The generators for space-bounded computation [24], [25], [19] and the improvements for combinatorial rectangles [14], [10], [23] all use seed length $\geq \Omega(\lg n \lg \lg n)$ to achieve error $\leq 1 / n$. Also, taking a random walk on a constant-degree expander [4] (cf. [16, $\S 5.3]$) one gets only error $\geq 1 / n^{1-\epsilon}$.

However, we show how to get such a generator by a simple, recursive expander walk. Specifically, we start by using $O(\lg n)$ bits to perform a walk $v_{1}, v_{2}, \ldots, v \sqrt{\lg n}$ of length $\sqrt{\lg n}$ on a $\operatorname{poly}(n)$-size expander graph with degree $2^{O(\sqrt{\lg n})}$. Then we interpret each v_{i} as a random walk of length $\sqrt{\lg n}$ on an expander graph with n nodes and again degree $2^{O(\sqrt{\lg n})}$, and we output the $\lg n$ nodes. Picking expander graphs with second largest eigenvalue $\leq 2^{-\Omega(\sqrt{\lg n})}$ and using upper and lower bounds on the hitting probability of expander walks [21], [8] we obtain the
following theorem which allows us to make the construction explicit.

Theorem 1.3 (Rectangle generator). There is an explicit generator $G:\{0,1\}^{O(\lg n)} \rightarrow[n]^{\lg n}, G(x)=$ $\left(y_{1}, \ldots, y_{\lg n}\right)$, such that for any set $A \subseteq[n]$ of density $p:=|A| / n \geq 0.001$, we have for all sufficiently large n :

$$
\begin{array}{r}
\left(p-1 / 2^{\sqrt{\lg n}}\right)^{\lg n} \leq \operatorname{Pr}_{x \in\{0,1\}^{O(\lg n)}}\left[\forall i \leq \lg n: y_{i} \in A\right] \\
\leq\left(p+1 / 2^{\sqrt{\lg n}}\right)^{\lg n}
\end{array}
$$

In particular, if $p=|A| / n=1 / 2$ then

$$
\left|\operatorname{Pr}_{x \in\{0,1\} O(\lg n)}\left[\forall i \leq \lg n: y_{i} \in A\right]-1 / n\right| \leq 1 / n
$$

The generator in Theorem 1.3 as stated also fools tests $A_{1} \times A_{2} \times \cdots \times A_{\lg n}$ where the sets in each coordinate may be different and have density ≥ 0.001. For this generalization one can use [8, Theorem 4.2]. The generator can be further generalized to give larger polynomial stretch, at the price of making the error bound more complicated (details omitted).

This concludes the overview of our construction of randomized circuits.

Ruling out deterministic circuit: Our starting point for the lower bound for deterministic circuits is the result that depth- 3 circuits with bottom fan-in $\leq 0.5 \lg n$ cannot tell n bit strings of weight $\geq 2 n / 3$ from those of weight $\leq n / 3$. This is Theorem 1 in [33], and as discussed there the result can also be obtained using a switching lemma for small restrictions by Razborov [27, Lemma 4.4]. We obtain the lower bound in Theorem 1.1 by combining this result with Håstad's switching lemma [18].

For context, we mention that papers by Shaltiel and the author [28] and by Aaronson [1] prove lower bounds for the problem of distinguishing i.i.d. input bits that equal 1 with probability α from i.i.d. input bits that equal 1 with probability β, for various α and β. The lower bound in this paper does not follow easily from those in [28], [1], and a qualitative difference is that the lower bounds in [28], [1] also apply to randomized circuits, while the one in this paper, like Theorem 1 in [33] on which it is based, does not.

Organization: Because of Ajtai's simulation of randomized circuits of depth d by deterministic circuits of depth $d+2$ (cf. (\star) in section "The power of randomness"), to prove the two "if and only if" in Theorem 1.1 is sufficient to prove Corollary 1.2, i.e., a construction of randomized circuits and a lower bound for deterministic circuits. These are proved in § 2 and 3 respectively. In § 4 we review Ajtai's simulation for completeness. Finally, in $\S 5$ we mention a few open problems.

2. UPPER BOUND

In this section we prove the construction of randomized circuits in Theorem 1.1, restated next.
Theorem 2.1 (Randomized upper bound in Theorem 1.1). For every integer $d \geq 2$ and function $g(n):=\Omega\left(1 / \lg ^{d-1} n\right)$ there are explicit poly (n)-size depth-d randomized circuits that tell n-bit strings of hamming weight $\geq n(0.5+g(n))$ from strings of weight $\leq n(0.5-g(n))$ with error $\leq 1 / 3$.

The starting point is the following result which is essentially in [9] and [12]. Later we use it with $k:=d-2$.
Lemma 2.2. For every integer $k \geq 0$ there there are $\operatorname{poly}(n)$-size circuits $C:\{0,1\}^{\ell=\operatorname{poly}(n)} \rightarrow\{0,1\}$ of depth $k+1$ s.t.:
If $X^{+} \in\{0,1\}^{\ell}$ is a distribution of i.i.d. bits that come 1 with probability $p^{+} \geq \frac{1}{n}\left(1+0.7 \cdot 10^{k} / \mathrm{lg}^{k} n\right)$, then $\operatorname{Pr}\left[C\left(X^{+}\right)=1\right] \geq 2 / 3$; while
If $X^{-} \in\{0,1\}^{\ell}$ is a distribution of i.i.d. bits that come 1 with probability $p^{-} \leq \frac{1}{n}\left(1-0.7 \cdot 10^{k} / \lg ^{k} n\right)$, then $\operatorname{Pr}\left[C\left(X^{-}\right)=1\right] \leq 1 / 3$.

For completeness, we prove Lemma 2.2 at the end of this section.

To prove Theorem 2.1 we need to show how given an n-bit input x of relative hamming weight $1 / 2 \pm$ $\Theta\left(1 / \lg ^{d-1} n\right)$ we can generate independent bits with bias $\frac{1}{n}\left(1 \pm \Theta\left(1 / \lg ^{d-2} n\right)\right)$ to feed to Lemma 2.2, using a poly (n)-size depth- 2 circuit.

First we give a construction that is not explicit, and also only works when the probability gap is $\geq C / \lg ^{d-1} n$ for a certain constant C. Then we show an explicit construction (which also works for any probability gap $\Omega\left(1 / \lg ^{d-1} n\right)$.

The proofs in the rest of this section use the following inequalities most of which are standard, and the others can be verified numerically (they are convenient, not crucial for the proofs).

Fact 2.3.

$$
\begin{align*}
& \forall x: 1+x \leq e^{x} \tag{2}\\
& \forall x \in[0,1]: e^{x} \leq 1+2 x \tag{3}\\
& \forall x \in[0,0.78]: e^{-2 x} \leq 1-1.01 x \leq 1-x \tag{4}\\
& \forall x \in[0,1 / 2]: 1-x \geq e^{-x-x^{2}}=e^{-x(1+x)} \tag{5}\\
& \forall x \geq-1, r \geq 1:(1+x)^{r} \geq 1+r x ;\left(\text { Bernoulli's }^{\prime}\right) \tag{6}\\
& \forall x \geq-1, r \in[0,1]:(1+x)^{r} \leq 1+r x \tag{7}\\
& \forall x, r: x \cdot r \in[0,1]:(1+x)^{r} \leq 1+2 r x \tag{8}
\end{align*}
$$

Inequality (8) follows by combining Inequalities (2) and (3).

2.1. A non-explicit construction

We start with a standard lemma about non-explicit pseudorandom generators. For concreteness, we state it for combinatorial-rectangle tests.

Lemma 2.4 (Non-explicit generator for rectangles). For every integer $c \geq 4$ there is a collection C of $n^{c} \lg n$-tuples $S^{1}, \ldots, S^{n^{c}} \in[n]^{\lg n}$ such that for every set $A \subseteq[n]$ of relative hamming weight α we have:

$$
\left|\operatorname{Pr}_{i}\left[\forall j \leq \lg n: S_{j}^{i} \in A\right]-\alpha^{\lg n}\right| \leq 1 / n^{c / 3}
$$

where S_{j}^{i} is the jth coordinate of the ith tuple.
Proof: Pick C uniformly at random. Fix any set A. Let X_{i} be the $0-1$ indicator variable of the event $\forall j \leq \lg n$: $S_{j}^{i} \in A$. Note that $\operatorname{Pr}_{S^{i}}\left[X_{i}=1\right]=\alpha^{\lg n}$, and $\operatorname{Pr}_{i}[\forall j \leq$ $\left.\lg n: S_{j}^{i} \in A\right]=\sum_{i} X_{i} / n^{c}$. By a chernoff bound,

$$
\operatorname{Pr}_{C}\left[\left|\sum_{i} X_{i} / n^{c}-\alpha^{\lg n}\right| \geq \epsilon\right] \leq e\left(-\Omega\left(n^{c} \epsilon^{2}\right)\right)
$$

Picking $\epsilon:=1 / n^{c / 3}$, the probability is $e\left(-\Omega\left(n^{c / 3}\right)\right.$, which for $c \geq 4$ and n large enough is less than 2^{-n}. Since there are at most 2^{n} possible sets A, by a union bound there is a fixed choice for D that achieves the desired conclusion.

We also use the next claim showing that shallow decision trees can be simulated in depth 2 . Recall that a decision tree on m variables is a labeled binary tree where edges and leaves are labeled with 0 or 1 , and internal nodes with variables. A decision tree computes a function in the intuitive way, starting at the root and following the path according to the values of the input variables, and outputting the value at the reached leaf. We note that a decision tree of depth s can be written as a DNF with $\leq 2^{s}$ terms and bottom fan-in $\leq s$, by including a term of size $\leq s$ for each of the $\leq 2^{s}$ paths in the tree. Analogously, it can be written as a CNF with the same parameters, by first complementing the leaves of the tree, writing that as a DNF, and then complementing the DNF to a CNF using De Morgan's law.

Claim 2.5. Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ computable by a decision tree of depth t is computable by a DNF or CNF of size $2^{O(t)}$. In particular, any function $f:\{0,1\}^{n} \times\{0,1\}^{O(\lg n)} \rightarrow\{0,1\}$ such that for any y the function $f(\cdot, y)$ depends only on $O(\lg n)$ bits of x is computable by a poly (n)-size DNF and CNF.

Now we use the above lemmas to generate the distributions for Lemma 2.2.

Lemma 2.6. There is depth-2 circuit $D(x, r)$ where $|x|=$ $n,|r|=O(\lg n)$, of size $\operatorname{poly}(n)$ such that for any $1 / n \leq$ $\beta \leq 0.7 / \lg n$ we have:
$\forall x$ of hamming weight $\geq 1 / 2+\beta: \operatorname{Pr}_{r}[D(x, r)=1] \geq$ $\frac{1}{n}(1+\beta \lg n)$;
$\forall x$ of hamming weight $\leq 1 / 2+\beta: \operatorname{Pr}_{r}[D(x, r)=1] \leq$ $\frac{1}{n}(1-\beta \lg n)$.

The circuit can be written as a DNF or CNF.
Proof: Let C be a collection given by Lemma 2.4, for a sufficiently large constant c to be determined later. We let
the input string r of $O(\lg n)$ bits index the tuple S^{r}. On input x, r, the circuit D outputs 1 if $\forall j \leq \lg n: S_{j}^{r} \in x$, i.e., if the S_{j}^{r} th bit of x is 1 .
D can be implemented by a poly (n)-size DNF or CNF by Claim 2.5.

For the analysis, let x be a string of hamming weight $\geq 1 / 2+\beta$. Then

$$
\begin{aligned}
& \operatorname{Pr}_{r}[D(x, r)=1] \geq(1 / 2+\beta)^{\lg n}-1 / n^{c / 3}(\text { By Lem. 2.4) } \\
& =\frac{1}{n}(1+2 \beta)^{\lg n}-1 / n^{c / 3} \\
& \geq \frac{1}{n}(1+2 \beta \lg n)-1 / n^{c / 3}(\text { By Ineq. 2.3-(6) }) \\
& \geq \frac{1}{n}(1+\beta \lg n) .(\text { Since } \beta \geq 1 / n ; \text { for } c \text { large enough })
\end{aligned}
$$

Conversely, let x be a string of hamming weight $\leq 1 / 2-$ β. Then

$$
\begin{aligned}
& \operatorname{Pr}_{r}[D(x, r)=1] \leq(1 / 2-\beta)^{\lg n}+1 / n^{c / 3} \text { (By Lem. 2.4) } \\
& =\frac{1}{n}(1-2 \beta)^{\lg n}+1 / n^{c / 3} \\
& \leq \frac{1}{n} e(-2 \beta \lg n)+1 / n^{c / 3}(\text { By Ineq. 2.3-(2)) } \\
& \leq \frac{1}{n}(1-1.01 \beta \lg n)+1 / n^{c / 3}
\end{aligned}
$$

$$
\text { (By Ineq.2.3-(4) since } \beta \lg n \leq 0.78 \text {) }
$$

$$
\leq \frac{1}{n}(1-\beta \lg n) .(\text { Since } \beta \geq 1 / n \text {; for } c \text { large enough })
$$

We can now prove the upper bound for non-explicit circuit and with slightly specialized probability gap.

Proof of Theorem 2.1 for non-explicit circuits when $g(n):=0.7 \cdot 10^{d-2} / \lg ^{d-1} n$: Combine the circuits from Lemma 2.2 with $k:=d-2$ and 2.6 into a circuit of depth $(k+1)+1=d$. The transformation in Lemma 2.6 moves the biases to $\geq \frac{1}{n}\left(1+0.7 \cdot 10^{d-2} / \lg ^{d-2} n\right)$ and $\leq \frac{1}{n}\left(1-0.7 \cdot 10^{d-2} / \lg ^{d-2} n\right)$. This is what can be detected by the circuit of depth $d-1$ given by Lemma 2.2.

2.2. Explicit construction

In this section we make the construction explicit. The main tool is the following new generator for certain combinatorial rectangle tests.

Theorem 1.3 (Rectangle generator). (Restated.) There is an explicit generator $G:\{0,1\}^{O(\lg n)} \rightarrow[n]^{\lg n}, G(x)=$ $\left(y_{1}, \ldots, y_{\lg n}\right)$, such that for any set $A \subseteq[n]$ of density $p:=|A| / n \geq 0.001$, we have for all sufficiently large n :

$$
\begin{array}{r}
\left(p-1 / 2^{\sqrt{\lg n})^{\lg n} \leq \operatorname{Pr}_{x \in\{0,1\}^{\circ(\lg n)}}\left[\forall i \leq \lg n: y_{i} \in A\right]}\right. \\
\leq\left(p+1 / 2^{\sqrt{\lg n}}\right)^{\lg n}
\end{array}
$$

In particular, if $p=|A| / n=1 / 2$ then

$$
\left|\operatorname{Pr}_{x \in\{0,1\}^{\circ(\lg n)}}\left[\forall i \leq \lg n: y_{i} \in A\right]-1 / n\right| \leq 1 / n
$$

The generator in Theorem 1.3 is based on expander graphs. As is well-known, there are explicit families of expander graphs G_{n} on n nodes with second largest eigenvalue $\leq \lambda(n)$ and degree $(1 / \lambda(n))^{O(1)}$, for any explicit function $\lambda(n)$. For example one can take powers of any family of graphs with degree $O(1)$ and second largest eigenvalue $1-\Omega(1)$.

We make use of the following standard hitting properties of walks on expander graphs.

Lemma 2.7 (Hitting properties of expander walk). Consider a regular graph such that all (normalized) eigenvalues are at most λ in absolute value, except the biggest one. Fix any subset A of the vertices that has density p. Let x be the probability that a random walk of (edge) length ℓ on the graph (started at a uniform vertex) stays inside A. We have:

$$
\begin{equation*}
x \leq p(p+(1-p) \lambda)^{\ell} \tag{21}
\end{equation*}
$$

$$
[8, T h .4 .2]
$$

$$
p \geq 6 \lambda \Rightarrow
$$

$$
x \geq p(p-2 \lambda)^{\ell}
$$

We are only going to use the weaker bounds

$$
(p-2 \lambda)^{\ell+1} \leq x \leq(p+2 \lambda)^{\ell+1}
$$

(the upper bound with 2 instead of $(1-p)$ is also in [8], for large sets).

Proof of Theorem 1.3: Let $\ell:=\lg n$, which we assume to be a square integer for simplicity. For a regular graph G, we write $\lambda(G)$ for the second largest eigenvalue in absolute value.

Consider an expander graph G_{1} on n nodes with $\lambda\left(G_{1}\right)=: \alpha \leq 1 / 2^{c \sqrt{\ell}}$ for a universal constant c to be determined later, and degree $d=(1 / \alpha)^{O(1)}=2^{O(c \sqrt{\ell})}$ which for simplicity we assume to be a power of 2 . Walks of (vertex) length $\sqrt{\ell}$ are in $1-1$ correspondence with bit-strings of length $\ell+(\sqrt{\ell}-1) \cdot \lg (d)=: w=O(\ell)$, i.e. elements of $\left[2^{w}\right]=: W$. Note $|W|=\operatorname{poly}(n)$.

Now let $\gamma:=p / 2^{c}$ and consider another expander graph G_{2} on $|W|$ nodes with $\lambda\left(G_{2}\right) \leq \gamma^{\sqrt{\ell}}$ and degree $1 / \gamma^{O(\sqrt{\ell})}$. Walks of length $\sqrt{\ell}$ on G_{2} can be described with $\leq w+$ $\sqrt{\ell} \cdot \lg \left(1 / \gamma^{O(\sqrt{\ell})}\right)=O(\ell)$ bits, for any fixed γ.

The generator G is defined as follows. Use the input to specify a walk of length $\sqrt{\ell}$ on G_{2}. Let $v_{1}, \ldots, v_{\sqrt{\ell}}$ be the steps in the walk. Now interpret each v_{i} as a walk of length $\sqrt{\ell}$ in G_{1}, and output the corresponding $\sqrt{\ell} \cdot \sqrt{\ell}=\ell$ elements in $[n]$.

Analysis. For any set $A \subseteq[n]$, let $B \subseteq W$ be the set of walks of length $\sqrt{\ell}$ in G_{1} that stay inside A. Let $\beta:=$ $|B| /|W|$ and

$$
m:=\sqrt{\ell}
$$

By Lemma 2.7 , recalling $\alpha=\lambda\left(G_{1}\right) \leq 1 / 2^{c \sqrt{\ell}} \leq p / 6$, we have:

$$
(p-2 \alpha)^{m} \leq \beta \leq(p+2 \alpha)^{m}
$$

Using the fact that p is bounded away from 0 , that $\alpha \leq$ $1 / 2^{c m}$, that m is sufficiently large, and Inequalities 2.3.(8) and 2.3.(6):

$$
\begin{aligned}
\beta \leq(p+2 \alpha)^{m}=p^{m}(1+2 \alpha / p)^{m} & \leq p^{m}(1+4 m \alpha / p) \\
& \leq p^{m}(1+\sqrt{\alpha}) ; \\
\beta \geq(p-2 \alpha)^{m}=p^{m}(1-2 \alpha / p)^{m} & \geq p^{m}(1-2 m \alpha / p) \\
& \geq p^{m}(1-\sqrt{\alpha}) .
\end{aligned}
$$

Now the probability τ that all outputs of G stay inside A is the probability that all steps of a random walk in G_{2} stay inside B. By the upper bound in Lemma 2.7, using Inequality 2.3.(8) we have, recalling $\gamma:=p / 2^{c}$:

$$
\begin{aligned}
\tau & \leq\left(p^{m}(1+\sqrt{\alpha})+2 \gamma^{m}\right)^{m} \\
& \leq p^{\ell}\left(1+1 / 2^{c m / 2}+2 / 2^{c m}\right)^{m} \\
& \leq p^{\ell}\left(1+3 / 2^{c m / 2}\right)^{m} \\
& \leq p^{\ell}\left(1+6 m / 2^{c m / 2}\right) \\
& \leq p^{\ell}\left(1+1 / 2^{c m / 4}\right)
\end{aligned}
$$

And this concludes the proof of the upper bound because c is arbitrary and for $q:=1 / 2^{c m / 4}$ we have $p^{\ell}(1+q) \leq$ $p^{\ell}(1+q)^{\ell} \leq(p+q)^{\ell}$.

For the lower bound, we start by noting that we can apply the lower bound in Lemma 2.7 because

$$
\beta \geq p^{m}(1-\sqrt{\alpha}) \geq 0.5 p^{m} \geq 6 \gamma^{m}=6\left(p / 2^{c}\right)^{m}
$$

Hence, using that bound and Bernoulli's Inequality 2.3.(6) we derive

$$
\begin{aligned}
\tau & \geq\left(p^{m}(1-\sqrt{\alpha})-2 \gamma^{m}\right)^{m} \\
& \geq p^{\ell}\left(1-1 / 2^{c m / 2}-2 / 2^{c m}\right)^{m} \\
& \geq p^{\ell}\left(1-3 / 2^{c m / 2}\right)^{m} \\
& \geq p^{\ell}\left(1-3 m / 2^{c m / 2}\right) \\
& \geq p^{\ell}\left(1-1 / 2^{c m / 4}\right)
\end{aligned}
$$

And again this concludes the proof of the lower bound because c is arbitrary and for $q:=1 / 2^{c m / 4}$ we have $p^{\ell}(1-q) \geq p^{\ell}(1-q)^{\ell} \geq(p-q)^{\ell}$.

To get a construction for any probability gap $g(n)=$ $\Omega\left(1 / \lg ^{d-1} n\right)$ (as opposed to $g(n) \geq C / \lg ^{d-1} n$ for some large C as in $\S 2.1$), we also need to boost the probability gap by a constant. This is provided by the following lemma using recursive majorities.
Lemma 2.8 (Boosting gap by a constant). For any $c>0$ there is $k>0$ such that for all n :

There is an explicit map $G:\{0,1\}^{n} \times\{0,1\}^{k \lg n}$ such that
(1) For every $y, G(x, y)$ depends on $\leq k$ bits of x;
(2) For every $x \in\{0,1\}^{n}$ such that the weight of x is $\geq 1 / 2+\epsilon(\leq 1 / 2-\epsilon)$ for $\epsilon \leq 1 / k$ we have $\operatorname{Pr}_{y}[G(x, y)=$ $1] \geq 1 / 2+c \epsilon\left(\operatorname{Pr}_{y}[G(x, y)=1] \leq 1 / 2-c \epsilon\right)$.

Proof: We let $k:=3^{t}$ for a value t depending only on c and define G to pick k independent bits of x and output the recursive-majority-of-three of the bits. We just need to verify that majority-of-three "amplifies." Indeed, consider the majority of three i.i.d. bits x_{1}, x_{2}, x_{3} coming up 1 with probability $1 / 2+\beta$, where $\beta \in[-1 / 2,1 / 2]$. We have:

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{maj}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=1\right] \\
& =(1 / 2+\beta)^{3}+3(1 / 2+\beta)^{2}(1 / 2-\beta) \\
& =1 / 2+\beta\left(3 / 2-\beta^{2}\right)
\end{aligned}
$$

Thus, when $|\beta|$ is small enough this results in multiplying β by a constant bigger than 1 , say 1.1. So we can set $t:=$ $\lg _{1.1} c$ and for all sufficiently small β achieve the desired result.

We can now state and prove the construction of explicit DNF (or CNF).
Lemma 2.9. Let $\epsilon(n):=\alpha / \lg ^{b} n$ for some $\alpha>0$ and $b \geq 1$. There are explicit poly (n)-size DNF (or CNF) D : $\{0,1\}^{n} \times\{0,1\}^{O(\lg n)} \rightarrow\{0,1\}$ such that
(1) for any string $x \in\{0,1\}^{n}$ of hamming weight $\geq 1 / 2+$ ϵ we have $\operatorname{Pr}_{y}[D(x, y)=1] \geq \frac{1}{n}\left(1+0.7 \cdot 10^{b-1} / \lg ^{b-1} n\right)$;
(2) for any string $x \in\{0,1\}^{n}$ of weight $\leq 1 / 2-\epsilon$ we have $\operatorname{Pr}_{y}[D(x, y)=1] \leq \frac{1}{n}\left(1-0.7 \cdot 10^{b-1} / \lg ^{b-1} n\right)$.

Proof: Let $\ell:=\lg n$. Consider the map G from Lemma 2.8 with a sufficiently large c depending on α, and let $k=O(1)$ be the associated constant guaranteed by the lemma. Note that the hypothesis $\epsilon \leq 1 / k$ in that lemma is satisfied, because $\epsilon=o(1)$. Now consider the function $f:\{0,1\}^{n} \times\{0,1\}^{O(k \ell)=O(\ell)} \rightarrow\{0,1\}$ that on input (x, y) uses the generator from Theorem 1.3 on input y to select ℓ random choices y_{1}, \ldots, y_{ℓ} for G, and then outputs 1 iff for all $i \leq \ell$ we have $G\left(x, y_{i}\right)=1$.

Note for every y this function just depends on $\ell \cdot c=$ $O(\lg n)$ bits of x. Hence by Claim $2.5 f$ can be written as a DNF or CNF of size poly (n).

Now fix any x of weight $\geq 1 / 2+\epsilon$. For large enough c, we have:

$$
\begin{aligned}
& \operatorname{Pr}[f(x, y)=1] \geq\left(1 / 2+c \epsilon-1 / 2^{\sqrt{\ell}}\right)^{\ell} \\
& \geq\left(1 / 2+(c-1) \alpha / \ell^{b}\right)^{\ell} \\
& \geq\left(1 / 2+0.7 \cdot 10^{b-1} / \ell^{b}\right)^{\ell} \\
& \geq \frac{1}{n}\left(1+0.7 \cdot 10^{b-1} / \ell^{b-1}\right)(\text { By Inequality } 2.3 .(6)) .
\end{aligned}
$$

Similarly, fix any x of weight $\leq 1 / 2-\epsilon$. For large enough
c, we have:

$$
\begin{aligned}
\operatorname{Pr}_{y}[f(x, y)=1] & \leq\left(1 / 2-c \epsilon+1 / 2^{\sqrt{\ell}}\right)^{\ell} \\
& \leq\left(1 / 2-(c-1) \alpha / \ell^{b}\right)^{\ell} \\
& \leq \frac{1}{n}\left(1-2 \cdot 0.7 \cdot 10^{b-1} / \ell^{b}\right)^{\ell} \\
& \leq \frac{1}{n} \exp \left(-2 \cdot 0.7 \cdot 10^{b-1} / \ell^{b-1}\right) .
\end{aligned}
$$

Now, if $b>1$ the argument of $\exp (\cdot)$ goes to 0 with n and so we conclude by Inequality 2.3.(4) that $\operatorname{Pr}_{y}[f(x, y)=$ $1] \leq \frac{1}{n}\left(1-0.7 \cdot 10^{b-1} / \ell^{b-1}\right)$.

Otherwise, if $b=1$ then we get $\operatorname{Pr}_{y}[f(x, y)=1] \leq$ $\frac{1}{n} \exp (-2 \cdot 0.7)=\frac{1}{n}(0.2465 \ldots)<\frac{1}{n}(1-0.7)$.
We can now prove the upper bound in the same way as we proved a special case at the end of the previous subsection.

Proof of Theorem 2.1: Combine the circuits from Lemma 2.2 with $k:=d-2$ and Lemma 2.9 into a circuit of depth $(k+1)+1=d$. The transformation in Lemma 2.9 moves the biases to $\geq \frac{1}{n}\left(1+0.7 \cdot 10^{d-2} / \lg ^{d-2} n\right)$ and $\leq \frac{1}{n}\left(1-0.7 \cdot 10^{d-2} / \lg ^{d-2} n\right)$. This is what can be detected by the circuit of depth $d-1$ given by Lemma 2.2.

2.3. Proof of Lemma 2.2

For completeness in this section we give the proof of the following lemma which is essentially in [9], [12].

Lemma 2.2. For every integer $k \geq 0$ there there are $\operatorname{poly}(n)$-size circuits $C:\{0,1\}^{\ell=\operatorname{poly}(n)} \rightarrow\{0,1\}$ of depth $k+1$ s.t.:
If $X^{+} \in\{0,1\}^{\ell}$ is a distribution of i.i.d. bits that come 1 with probability $p^{+} \geq \frac{1}{n}\left(1+0.7 \cdot 10^{k} / \mathrm{lg}^{k} n\right)$, then $\operatorname{Pr}\left[C\left(X^{+}\right)=1\right] \geq 2 / 3$; while
If $X^{-} \in\{0,1\}^{\ell}$ is a distribution of i.i.d. bits that come 1 with probability $p^{-} \leq \frac{1}{n}\left(1-0.7 \cdot 10^{k} / \lg ^{k} n\right)$, then $\operatorname{Pr}\left[C\left(X^{-}\right)=1\right] \leq 1 / 3$.

Proof of Lemma 2.2: We proceed by induction on k.
Base case $k=0 . C$ consists of one And gate on the complement of n bits. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[C\left(X^{+}\right)=1\right]=\left(1-p^{+}\right)^{n} \leq\left(1-\frac{1}{n}(1+0.7)\right)^{n} \\
& \leq e(-(1+0.7)) \leq 1 / 3 ; \text { (By Ineq. 2.3-(2)) } \\
& \operatorname{Pr}\left[C\left(X^{-}\right)=1\right]=\left(1-p^{-}\right)^{n} \geq\left(1-\frac{1}{n}(1-0.7)\right)^{n} \\
& \geq 1-(1-0.7)=0.7 \geq 2 / 3 . \text { (By Ineq. 2.3-(6)) }
\end{aligned}
$$

Complementing the circuit concludes the proof of this case. Induction step $k>1$. C consists of the circuit C^{\prime} for $k-1$ where each input gate is replaced with the circuit, denoted by D, which is one And gate on the complement of $\left\lfloor n \lg _{e} n\right\rfloor$ bits. The inputs to these gates are disjoint. All we need to verify is that D amplifies the bias to the value
that can be detected by C^{\prime}. Let $c:=0.7 \cdot 10^{k}$. We have

$$
\begin{aligned}
& \operatorname{Pr}\left[D\left(X^{-}\right)=1\right]=\left(1-p^{-}\right)^{\left\lfloor n \lg _{e} n\right\rfloor} \\
& \geq\left(1-\frac{1}{n}\left(1-c / \lg ^{k} n\right)\right)^{n \lg _{e} n} \\
& \geq e\left(-n \lg _{e} n\left(\frac{1}{n}\left(1-c / \lg ^{k} n\right)\right)\left[1+\frac{1}{n}\left(1-c / \lg ^{k} n\right)\right]\right) \\
& \quad \quad \text { (By Ineq. 2.3-(5)) } \\
& \geq e\left(-\lg _{e} n\left(1-c / \lg ^{k} n\right)\left[1+\frac{1}{n}\right]\right) \\
& \geq e\left(-\lg _{e} n\left(1-0.5 c / \lg ^{k} n\right)\right) \\
& \geq \frac{1}{n} e\left(0.5 c \lg _{e} n / \lg ^{k} n\right) \\
& \geq \frac{1}{n}\left(1+0.5 c /\left(\lg _{2} e \lg ^{k-1} n\right)\right)(\text { By Ineq. 2.3-(2)) } \\
& \geq \frac{1}{n}\left(1+0.7 \cdot 10^{k-1} / \lg ^{k-1} n\right) .
\end{aligned}
$$

Conversely:

$$
\begin{aligned}
& \operatorname{Pr}\left[D\left(X^{+}\right)=1\right]=\left(1-p^{+}\right)^{\left\lfloor n \lg _{e} n\right\rfloor} \\
& \leq\left(1-\frac{1}{n}\left(1+c / \lg ^{k} n\right)\right)^{\left\lfloor n \lg _{e} n\right\rfloor} \\
& \leq e\left(-\left(\left\lfloor n \lg _{e} n\right\rfloor / n\right)\left(1+c / \lg ^{k} n\right)\right) \text { (By Ineq. 2.3-2) } \\
& \leq e\left(-\left(\lg _{e} n-1 / n\right)\left(1+c / \lg ^{k} n\right)\right) \\
& \leq e\left(-\lg _{e} n-c \lg _{e} n / \lg ^{k} n+2 / n\right) \\
& \leq \frac{1}{n} e\left(-c \lg _{e} n / \lg ^{k} n\right) \cdot e(2 / n) \\
& \leq \frac{1}{n} e\left(-c \lg _{e} 2 / \lg ^{k-1} n\right)(1+4 / n)
\end{aligned}
$$

If $k=1$ then we get $\operatorname{Pr}\left[D\left(X^{+}\right)=1\right] \leq \frac{1}{n} e(-0.7 \cdot 10$. $\left.\lg _{e} 2\right)(1+4 / n) \leq \frac{1}{n}(1-0.7)$.

If $k>1$ then the argument to $e(\cdot)$ is small and we can use Inequality 2.3-(4) to get

$$
\begin{aligned}
\operatorname{Pr}\left[D\left(X^{+}\right)=1\right] & \leq \frac{1}{n}\left(1-0.5 \cdot c \cdot \lg _{e} 2 / \lg ^{k-1} n\right)(1+4 / n) \\
& \leq \frac{1}{n}\left(1-0.49 \cdot 0.7 \cdot 10^{k} \cdot \lg _{e} 2 / \lg ^{k-1} n\right) \\
& \leq \frac{1}{n}\left(1-0.7 \cdot 10^{k-1} / \lg ^{k-1} n\right)
\end{aligned}
$$

Either way, $\operatorname{Pr}\left[D\left(X^{+}\right)=1\right] \leq \frac{1}{n}\left(1-0.7 \cdot 10^{k-1} / \lg ^{k-1} n\right)$.
This achieves the desired bias amplification, except that X^{+}and X^{-}are "swapped." Complementing the circuit C fixes this. Finally, inspection reveals that for any k the size of the circuits (and in particular their input length) is polynomial in the parameter n.

3. Lower bound

In this section we prove the negative result for deterministic circuits in Theorem 1.1:

Theorem 3.1. For any $d \geq 3, c \geq 1$ there is $\epsilon=\epsilon(d, c)$ such that for sufficiently large n :

Depth- d size- n^{c} circuits cannot tell n-bit strings of hamming weight $\geq n\left(0.5+\epsilon / \lg ^{d-3} n\right)$ from strings of weight $\leq n\left(0.5-\epsilon / \lg ^{d-3} n\right)$.

To get a sense of the parameters, we note that for $d=3$ the dependence of ϵ on c is necessary, as can be verified using the arguments in [5] or [33].

Theorem 3.1 implies that for any $d \geq 3$ and any function $g(n)=o\left(1 / \lg ^{d-3} n\right)$, no family of poly (n)-size circuits of depth d can tell n-bit strings of hamming weight $\geq n(0.5+$ $g(n))$ from strings of weight $\leq n(0.5-g(n))$.

Recall that a restriction on m variables $x_{1}, x_{2}, \ldots, x_{m}$ is a map $\rho:\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \rightarrow\{0,1, *\}$. For a function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ we denote by $\left.f\right|_{\rho}$ the function we get by doing the substitutions prescribed by $\rho .\left.f\right|_{\rho}$ will be a function of the variables that were given the value * by ρ. Let $R_{m}^{\delta \cdot m}$ denote the uniform distribution on restrictions on m variables assigning exactly δm variables to $*$, and assigning random values to the others.

Lemma 3.2 (Switching lemma [18], [11]). Let φ be a DNF or a CNF formula in m variables with bottom fan-in at most r. For every $s \geq 0, p<1 / 7$, the probability over $\rho \in R_{m}^{p-m}$ that the function computed by $\left.\varphi\right|_{\rho}$ is not computable by a decision tree of height strictly less than s is less than $(7 p r)^{s}$.

We prove Theorem 3.1 in two stages. First we prove it under the additional assumption that the circuits have bottom fan-in $\leq 0.5 \lg n$. Then we get rid of the assumption on the bottom fan-in.

Proof of Theorem 3.1 under the assumption that circuits have bottom fan-in $\leq 0.5 \lg n$:

Induction on d.
For $d=3$ and any c, one can take $\epsilon=1 / 6$ [33, Theorem 1].

Fix any $d>3$ and any c. Let C be a circuit of depth d and size n^{c}. Let ρ be a random restriction on n bits assigning exactly $p n$ bits to $*$, where

$$
p:=1 /\left(4^{c+2} \lg n\right)
$$

which we assume to be even. We want to show that simultaneously two things happen:
(1) $\left.C\right|_{\rho}$ is a circuit of depth $d-1$, size $\leq n^{c+1}$, and bottom fan-in $\leq 0.5 \lg n$, and
(2) the bits fixed by ρ are balanced, i.e., exactly $(n-p n) / 2$ bits are set to 1 by ρ. The probability that (2) happens is $\geq \Omega(1 / \sqrt{n-p n}) \geq \Omega(1 / \sqrt{n})$ (standard approximation of the central binomial coefficients).

The probability that (1) does not happen is at most the probability that some of the $\leq n^{c}$ gates at distance two from the input cannot be written as a decision tree of depth $\leq 0.5 \lg n$ (cf. the comment after Lemma 3.2 about writing such a decision tree as a CNF or a DNF with bottom fan-in $\leq 0.5 \lg n$ and size $\leq \sqrt{n}$). By Lemma 3.2, this probability
is at most

$$
n^{c}(7 p 0.5 \lg n)^{0.5 \lg n} \leq n^{c}\left(4 \frac{\lg n}{4^{c+2} \lg n}\right)^{0.5 \lg n} \leq 1 / n
$$

So there exists ρ satisfying both (1) and (2). Fix such a ρ, and let $C^{\prime}:=\left.C\right|_{\rho} . C^{\prime}$ is a circuit of depth $d-1$ on

$$
m:=p n \geq n^{0.9}
$$

input bits of size $\leq n^{c+1} \leq n^{2 c} \leq m^{3 c}$. By induction hypothesis, there is a constant $\epsilon(d-1,3 c)$ such that for sufficiently large m, C^{\prime} cannot distinguish m-bit strings of hamming weight $\geq m\left(0.5+\epsilon(d-1,3 c) / \lg ^{d-1-3} m\right)$ from strings of weight $\leq m\left(0.5+\epsilon(d-1,3 c) / \lg ^{d-1-3} m\right)$. Without loss of generality, consider an m-bit string of hamming weight $\geq m\left(0.5+\epsilon(d-1,3 c) / \lg ^{d-1-3} m\right)$ on which C^{\prime} mistakenly outputs 0 . Since the restriction ρ sets to 1 exactly $(n-p n) / 2=(n-m) / 2$ bits, note that this output of C^{\prime} is the same as the output of the original circuit C on an n-bit input of hamming weight at least

$$
\begin{aligned}
& (n-m) / 2+m\left(0.5+\epsilon(d-1,3 c) / \lg ^{d-1-3} m\right) \\
& \geq n\left(0.5+\frac{p \epsilon(d-1,3 c)}{\lg ^{d-1-3} n}\right)(\text { since } n \geq m) \\
& =n\left(0.5+\frac{\epsilon(d-1,3 c)}{4^{c+2} \lg ^{d-3} n}\right)
\end{aligned}
$$

This concludes the proof for $\epsilon(d, c):=\epsilon(d-1,3 c) / 4^{c+2}$.
Proof of Theorem 3.1: Fix any $d \geq 3$ and any c, and let C be a circuit of depth d and size n^{c}, which we view as a circuit of depth $d+1$ with bottom fan-in 1 . Let ρ be a random restriction on n bits assigning exactly $m:=p n$ bits to $*$, where

$$
p:=1 /\left(7 \cdot 4^{c+1}\right)
$$

As in the previous proof, with non-zero probability both the bits fixed by ρ are balanced, and $\left.C\right|_{\rho}$ can be written as a circuit of depth d, size $\leq n^{c+1}$, and bottom fan-in $\leq 0.5 \lg n$.

By the previous proof, for some ϵ^{\prime} which depends on d and c, for large enough m the circuit $C^{\prime}:=\left.C\right|_{\rho}$ cannot distinguish m-bit strings of hamming weight $\geq m(0.5+$ $\left.\epsilon(d, c+1) / \lg ^{d-3} m\right)$ from strings of weight $\leq m(0.5-$ $\left.\epsilon(d, c+1) / \lg ^{d-3} m\right)$. Without loss of generality, suppose C^{\prime} gives the wrong answer on a string of weight $\geq m(0.5+$ $\left.\epsilon(d, c+1) / \lg ^{d-3} m\right) \geq m\left(0.5+\epsilon(d, c+1) / \lg ^{\overline{d-3}} n\right)$.

Therefore C gives the wrong answer on a string of weight

$$
\begin{aligned}
0.5(n-m) & +m\left(0.5+\epsilon^{\prime} / \lg ^{d-3} n\right) \\
= & n\left(0.5+p \epsilon^{\prime} / \lg ^{d-3} n\right)
\end{aligned}
$$

This concludes the proof for $\epsilon(d, c):=p \epsilon^{\prime}=\epsilon^{\prime} /\left(7 \cdot 4^{c+1}\right)$.

4. Ajtai's CONSTRUCTION

In this section for completeness we include a proof of the following result by Ajtai.
Theorem 4.1 ([5]). For any $n, \epsilon>0, n$ there is a deterministic, monotone, And-Or-And circuit of size $n^{O(1 / \epsilon)}$ that distinguishes n-bit strings with hamming weight $\geq 1 / 2+\epsilon$ from weight $\leq 1 / 2-\epsilon$.

In particular, any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ computable by randomized, poly (n)-size circuits of depth d with error $1 / 3$ can be computed by (deterministic) poly (n)-size circuits of depth $d+2$.

Proof: We give a probabilistic construction that for every fixed input x has error probability $<2^{-n}$. One can then apply a union bound.

Pick the And close to the input at random over $c \lg (n) / \epsilon$ variables, for a large enough c. Then the middle Or has fan-in $n^{c / \epsilon}$, and the output And has fan-in n. We write $A(x), O A(x)$, and $A O A(x)$ for the output of a gate at distance 1,2 , and 3 from the input x. We also make use of the inequalities in Fact 2.3.

Let x be any input with weight $\geq 1 / 2+\epsilon$:

$$
\begin{aligned}
& \operatorname{Pr}[A(x)=1]=(1 / 2+\epsilon)^{c \lg (n) / \epsilon} \\
& =n^{-c / \epsilon}(1+2 \epsilon)^{c \lg (n) / \epsilon} \geq n^{-c / \epsilon} e^{c \lg n} ; \\
& \operatorname{Pr}[O A(x)=1] \geq 1-\left(1-n^{-c / \epsilon} e^{c \lg n}\right)^{n^{c / \epsilon}} \\
& \geq 1-\left(e^{-e^{c \lg n}}\right) \\
& \operatorname{Pr}[A O A(x)=1] \geq\left(1-e^{-e^{c \lg n}}\right)^{n} \\
& \geq 1-n e^{-e^{c \lg n}} \geq 1-2^{-n}
\end{aligned}
$$

for c, n sufficiently large.
Conversely, let x be any input with weight $\geq 1 / 2-\epsilon$:

$$
\begin{aligned}
& \operatorname{Pr}[A(x)=1]=(1 / 2-\epsilon)^{c \lg (n) / \epsilon} \\
& =n^{-c / \epsilon}(1-2 \epsilon)^{c \lg (n) / \epsilon} \leq n^{-c / \epsilon} e^{-2 c \lg n} ; \\
& \operatorname{Pr}[O A(x)=1] \leq 1-\left(1-n^{-c / \epsilon} e^{-2 c \lg n}\right)^{n^{c / \epsilon}} \\
& \leq e^{-2 c \lg n} ; \\
& \operatorname{Pr}[A O A(x)=1] \leq\left(e^{-2 c \lg n}\right)^{n} \\
& \leq 2^{-n}
\end{aligned}
$$

The "in particular" part is obtained as follows. Run in parallel bn copies of the circuit with independent choices for the random coins, for a large enough universal constant b. By a chernoff bound, you can fix the randomness so that for any input at least $2 / 3$ of the outputs equal $f(x)$. Thus feeding these $O(n)$ outputs to the circuit constructed in the first part of the theorem we compute f correctly. By collapsing adjacent layers of gates, the final circuit has depth $d+2$ in case each output was and And gate. If not, complement the circuit, apply this construction, and complement again.

5. Open problems

We now list a few open problems.
(1) Make the deterministic circuits explicit. This is only known for depth 3 [33].
(2) Prove that small depth-3 circuits that tell weights $1 / 2 \pm \epsilon$ require bottom fan-in $\Omega(\lg (n) / \epsilon)$. This seems to require new techniques (neither the switching lemma nor [33] gives this) and should imply a tight size lower bound in the superpolynomial regime.
(3) Obtain a generator like Theorem 1.3 with error $1 / n^{2}$ instead of $1 / n$ (to fool sets of size $n / 2$).

Acknowledgments: We thank Kord Eickmeyer for helpful initial discussions on this problem, and Joshua Brody and Elad Verbin for sending us a preliminary version of [12]. We are also grateful to Oded Goldreich and the anonymous referees for helpful comments on the write-up.

References

[1] S. Aaronson, "BQP and the polynomial hierarchy," in 42nd Symposium on the Theory of Computing (STOC). ACM, 2010, pp. 141-150.
[2] L. Adleman, "Two theorems on random polynomial time," in 19th Symposium on Foundations of Computer Science (FOCS). IEEE, 1978, pp. 75-83.
[3] M. Agrawal, "Hard sets and pseudo-random generators for constant depth circuits," in 21st Foundations of Software Technology and Theoretical Computer Science. SpringerVerlag, 2001, pp. 58-69.
[4] M. Ajtai, J. Komlos, and E. Szemeredi, "Deterministic simulation in logspace," in 19th ACM Symposium on Theory of Computing (STOC), 1987, pp. 132-140.
[5] M. Ajtai, " Σ^{1} [1]-formulae on finite structures," Ann. Pure Appl. Logic, vol. 24, no. 1, pp. 1-48, 1983.
[6] - , "Approximate counting with uniform constant-depth circuits," in Advances in computational complexity theory. Providence, RI: Amer. Math. Soc., 1993, pp. 1-20.
[7] M. Ajtai and M. Ben-Or, "A theorem on probabilistic constant depth computation," in 16th ACM Symposium on the Theory of Computing (STOC), 1984, pp. 471-474.
[8] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman, "Derandomized graph products," Computational Complexity, vol. 5, no. 1, pp. 60-75, 1995.
[9] K. Amano, "Bounds on the size of small depth circuits for approximating majority," in 36th Colloquium on Automata, Languages and Programming (ICALP). Springer, 2009, pp. 59-70.
[10] R. Armoni, M. E. Saks, A. Wigderson, and S. Zhou, "Discrepancy sets and pseudorandom generators for combinatorial rectangles," in 37th Symposium on Foundations of Computer Science (FOCS). IEEE, 1996, pp. 412-421.
[11] P. Beame, "A switching lemma primer," Department of Computer Science and Engineering, University of Washington, Tech. Rep. UW-CSE-95-07-01, November 1994, available from http://www.cs.washington.edu/homes/beame/.
[12] J. Brody and E. Verbin, "The coin problem, and pseudorandomness for branching programs," in 51th Symposium on Foundations of Computer Science (FOCS), 2010.
[13] S. Chaudhuri and J. Radhakrishnan, "Deterministic restrictions in circuit complexity," in 28th Symposium on the Theory of Computing (STOC), 1996, pp. 30-36.
[14] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic, "Efficient approximation of product distributions," Random Struct. Algorithms, vol. 13, no. 1, pp. 1-16, 1998.
[15] S. Even, A. L. Selman, and Y. Yacobi, "The complexity of promise problems with applications to public-key cryptography," Inform. and Control, vol. 61, no. 2, pp. 159-173, 1984.
[16] O. Goldreich, Pseudorandom Generators: A Primer, ser. University Lecture Series. AMS, 2010, vol. 55.
[17] S. Goldwasser and M. Sipser, "Private coins versus public coins in interactive proof systems," in 18th ACM Symposium on Theory of Computing (STOC), 1986, pp. 59-68.
[18] J. Håstad, Computational limitations of small-depth circuits. MIT Press, 1987.
[19] R. Impagliazzo, N. Nisan, and A. Wigderson, "Pseudorandomness for network algorithms," in 26th ACM Symposium on the Theory of Computing (STOC), 1994, pp. 356-364.
[20] R. Impagliazzo and A. Wigderson, " $P=B P P$ if E requires exponential circuits: Derandomizing the XOR lemma," in 29th Symposium on the Theory of Computing (STOC). ACM, 1997, pp. 220-229.
[21] N. Kahale, "Eigenvalues and expansion of regular graphs," J. Assoc. Comput. Mach., vol. 42, no. 5, pp. 1091-1106, 1995.
[22] C. Lautemann, "BPP and the polynomial hierarchy," Information Processing Letters, vol. 17, no. 4, pp. 215-217, 1983.
[23] C.-J. Lu, "Improved pseudorandom generators for combinatorial rectangles," Combinatorica, vol. 22, no. 3, pp. 417-433, 2002.
[24] N. Nisan, "Pseudorandom generators for space-bounded computation," Combinatorica, vol. 12, no. 4, pp. 449-461, 1992.
[25] N. Nisan and D. Zuckerman, "Randomness is linear in space," vol. 52, no. 1, pp. 43-52, Feb. 1996.
[26] P. Ragde and A. Wigderson, "Linear-size constant-depth polylog-treshold circuits," Inf. Process. Lett., vol. 39, no. 3, pp. 143-146, 1991.
[27] A. Razborov, "Pseudorandom generators hard for $k-d n f$ resolution and polynomial calculus resolution," 2002-2003, manuscript. Available from http://www.mi.ras.ru/~razborov/.
[28] R. Shaltiel and E. Viola, "Hardness amplification proofs require majority," SIAM J. on Computing, vol. 39, no. 7, pp. 3122-3154, 2010.
[29] M. Sipser, "A complexity theoretic approach to randomness," in 15th ACM Symposium on Theory of Computing, Boston, Massachusetts, 25-27 Apr. 1983, pp. 330-335.
[30] L. Stockmeyer, "On approximation algorithms for \#P," SIAM J. on Computing, vol. 14, no. 4, pp. 849-861, Nov. 1985.
[31] L. J. Stockmeyer, "The complexity of approximate counting," in 15th Symposium on Theory of Computing (STOC). ACM, 1983, pp. 118-126.
[32] E. Viola, "The complexity of constructing pseudorandom generators from hard functions," Computational Complexity, vol. 13, no. 3-4, pp. 147-188, 2004.
[33] -_, "On approximate majority and probabilistic time," Computational Complexity, vol. 18, no. 3, pp. 337-375, 2009.
[34] A. Yao, "Separating the polynomial-time hierarchy by oracles," in 26th Symposium on Foundations of Computer Science (FOCS). IEEE, 1985, pp. 1-10.

